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Abstract Collisional energy transfer between highly vibrationally excited mole-
cules and a bath gas is considered as a stochastic process occurring in energy space.
An exact solution to master equation for the conditional probability is given in terms
of simple analytical formulas for weak and strong collisions. The strong collisions are
shown to manifest themselves in the distribution pattern composed of maxima and
minima in the energy dependence of conditional probability. This effect is explained
in detail on physical grounds.
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1 Introduction

Most theoretical studies on vibrational energy relaxation in gases are based on a Mar-
kov approximation in which collisions are considered as a sequence of almost entirely
uncorrelated events due to the substantial difference in the time of collision and the
time between collisions. Over the course of many collisions, E can acquire many
values, and the resulting trajectory is a random walk among the allowed values in the
energy space. The Markov process is known to be entirely defined by two probability
density functions used to obtain the averages per collision with the transition probabil-
ity P(E → E ′) and the bulk averages with the conditional probability G(E, t |E ′, t ′)
[1–5]. Theoretically, the probability P(E → E ′) is of the utmost significance since

M. L. Strekalov (B)
Theoretical Chemistry Laboratory, Institute of Chemical Kinetics and Combustion,
Siberian Branch of the Russian Academy of Sciences, 3 Institutskaya Street,
630090 Novosibirsk, Russia
e-mail: m.l.strekalov@mail.ru

123



1022 J Math Chem (2012) 50:1021–1030

it contains exhaustive information on the energy-transfer processes, which can be
extracted from the solution of master equation. The problem is that until recently, the
P(E → E ′) probability could not be measured experimentally except for its first and
second moments.

Usually, the transition probability is modeled by simple analytical functions that
depend on the adjustable parameters, which are closely related to the first and, in
some cases, to the second moments of P(E → E ′) [3–9]. Recently, the exact rela-
tionship has been determined between the P(E → E ′) distribution and the quantum
transition probabilities Pi→ f of an active molecule under the action of collisions in a
thermal bath [10]. Considering the active molecule as a system of harmonic oscillators,
we have derived an analytical expression for P(E → E ′) from the “first principles”
using the first-order perturbation theory for the Pi→ f probability of transition between
vibrational states i and f . The only parameter of the model is expressed in terms of
the mean number of collisions ZV that may be either calculated numerically or taken
from experiments. In this case, the Laguerre polynomials are the eigenfunctions of
the P(E → E ′)kernel and, therefore, the solution of master equation is found as an
eigenfunction expansion in terms of these polynomials.

For polyatomic gases, the mean number of collisions ZV changes within wide lim-
its from 100 to 105 [11]. With a great number of steps, the process, during which
the equilibrium is reached, shows up as diffusion. Unfortunately, the solution to the
master equation, found as a series, appears to be of no use for the most interesting case
where the diffusion approximation holds, because at ZV >> 1, the series converges
very slowly. In this Letter, we are going to clear up the trouble (a limitation of this
solution method) and to derive a compact expression in the form of a simple analytical
formula. For strong collisions (ZV ≈ 1), a numerical solution to the master equation
also involves certain problems. In this case, it is necessary to rewrite the input series as
a double series in which the finite one is given in terms of the effectively computable
functions. This solution is of interest because of the structure, consisting of maxima
and minima in the energy dependence of conditional probability. We will interpret this
phenomenon physically.

2 Transition probabilities

Consider the system of vibrationally excited molecules that are highly dispersed in a
constant-temperature heat bath. We assume then that an active molecule consists of
s harmonic oscillators whose internal energy varies at collisions in a heat bath. The
collisions cause transitions only between the neighboring vibrational levels. In the
specified conditions, the probability of transition from the state with the initial energy
E to that with the final energy E ′ near E ′ + d E ′ is given by the expression [10]

P(E → E ′; γ ) = N eq(E ′)
∞∑

k=0

γ k�k(E)�k(E ′) (1)

In this case, N eq(E) is the equilibrium or thermal internal energy distribution, and
�k(E) is the system of orthonormalized polynomials, generated by the weight function
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N eq(E) over the interval (0,∞). Obviously, �k(E) are the eigenfunctions of the
P(E → E ′) kernel. Parameter γ is related to the mean number of collisions via the
equation

γ = 1 − 1

ZV
(2)

The collisions are weak at ZV >> 1. In each collision, the internal energy varies
negligibly and the energy-transfer process shows up as diffusion in energy space. In
the absence of relaxation, we get P(E → E ′) = δ(E − E ′), which corresponds to
the limit ZV = ∞. The collisions are strong at ZV ≈ 1. In particular, the limiting
case ZV = 1 corresponds to the model of strong collisions. The collisions, considered
in the model, are so strong that, in the mean, the equilibrium state is reached in one
collision P(E → E ′) = N eq(E ′).

Thus, in the case of strong collisions, the thermal distribution of internal energy is
of great importance for the problem under study. The simplifying condition, implicit in
Eq. (1), is that N eq(E) is the classical thermal distribution. With this distribution, the
mean thermal energy becomes equal to skB T . For the molecules with a great number
of vibrational degrees of freedom, this limiting value is inaccessible at all temperatures
with the molecule observed as a bound system. We believe that the model, involving
a realistic vibrational density of states, can be used to remove this assumption in
evaluating P(E → E ′). Recently, the simple relations between the thermodynamic
properties and the molecular density of states have been applied to formulate an accu-
rate method for determining the vibrational state density, taking into account both the
quantum and anharmonic effects [12–14]. The energy dependence of the state density
is of the form

ρ(E) ∝ (E − E∗)a−1 (3)

With regard to the density of states, ρ(E), the normalized thermal distribution obeys
the equation

N eq(E) = 1

�(a)kB T

(
E − E∗

kB T

)a−1

exp

(
− E − E∗

kB T

)
, E ≥ E∗ (4)

Note that N eq(E) = 0 at E < E∗. The unknown parameters are determined from
this distribution by calculating the mean thermal energy 〈E〉T and the total vibrational
heat capacity of the gas, Cvib, namely:

〈E〉T = E∗ + akB T (5)

and

a =
〈(

E − 〈E〉T

kB T

)2
〉

T

= Cvib

kB
(6)
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To gain greater insight into the physical meaning of these parameters, we give the
limiting form of relations (5) and (6) at low and high temperatures

a =
{

0, T = 0
s, T → ∞ and E∗ =

{
E0, T = 0
0, T → ∞ , (7)

where s is the number of vibrational degrees of freedom, and E0 is the zero-point
energy. Thus, the parameter a is the effective number of oscillators and E∗ is taken
as the zero of energy. At high temperatures, Eq. (4) gives the classical distribution
of vibrational energy. The �k(E) polynomials are related directly to the Laguerre
polynomials

�k(E) =
[

�(a)k!
�(a + k)

] 1
2

L(a−1)
k

(
E − E∗

kB T

)
(8)

Now we use the generating function of Laguerre polynomials [15]

∞∑

k=0

k!γ k

�(a + k)
L(a−1)

k (x)L(a−1)
k (y) = (γ xy)−(a−1)/2

1 − γ
exp

(
−γ

x + y

1 − γ

)

× Ia−1

(
2
√

γ xy

1 − γ

)
, (9)

where Ia−1 is the modified Bessel function. Taking into account Eq. (9), which implies
Eq. (8), we can rewrite Eq. (1) in the compact form

P(E → E ′; γ ) = 1

kB T (1 − γ )

(
y

γ x

)(a−1)/2

exp

[
− y + γ x

kB T (1 − γ )

]

×Ia−1

[
2
√

γ xy

kB T (1 − γ )

]
, (10)

where x, y are the dimensionless variables

x = E − E∗
kB T

, y = E ′ − E∗
kB T

(11)

The limiting cases of strong and weak collisions follow from this distribution at γ = 0
and 1, respectively.

3 Analytical solutions to the master equation

The master equation is the starting point of many investigations of time-dependent
phenomena in the statistical description of relaxation processes. Specifically, the time
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evolution of the population, N (E, t), where E is the internal energy of the system,
taken as a continuous variable, is given by the master equation [1,2]

∂

∂t
N (E, t) = ν

∞∫

0

[
P

(
E ′ → E

)
N (E ′, t) − P

(
E → E ′) N (E, t)

]
d E ′, (12)

where ν is the collision frequency. The general solution can be expressed in terms of
a series of the �k(E) polynomials

N (E, t) = N eq(E)

∞∑

k=0

ck gk(t)�k(E), (13)

where the coefficients ck are determined by initial conditions with c0 = 1 and gk(0) =
1. From Eq. (1), it is concluded that the transition probability is the kernel of the integral
equation with the �k(E) eigenfunctions and the γ k eigenvalues. Since the population
is also expressed in terms of these eigenfunctions, the solution is found quite readily.
In this case, we get a simple solution to the gk(t) functions

gk(t) = exp
[
−

(
1 − γ k

)
νt

]
(14)

Of special interest is the so-called fundamental solution (or the Green function),
G(Ei , ti |E, t), which at t = ti is reduced to δ(E − Ei ). If the Green function is
known, the population, corresponding to the arbitrary initial condition, N (Ei , 0), is
given by the integral

N (E, t) =
∞∫

0

N (Ei , 0)G(Ei , 0|E, t)d Ei (15)

Physically, G(Ei , ti |E, t) is the conditional probability that the random variable E(t)
takes the value E at time t provided it was Ei at previous time ti . At fixed t , it
represents the fractional population of hot molecules as a function of their internal
energy E . According to the completeness property for the �k(E) polynomials, we
use ck = �k(Ei ) to obtain

G(Ei , ti |E, t) = N eq(E)

∞∑

k=0

exp
[
−

(
1 − γ k

)
ν(t − ti )

]
�k(Ei )�k(E) (16)

It is readily seen that this solution describes the Markov process where the probability
of transition to a new state of the system depends on the current state only (see for
details [1]).

Let us consider the two limiting cases following from Eq. (16) for weak and strong
collisions. For the weak collisions (ZV >> 1), we approximately get 1−γ k ≈ k/ZV .
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In this case, the expression for G(Ei , ti |E, t) can be rewritten in a more compact form
using the generating function of Laguerre polynomials (see Eq. 9). Finally, we get the
analytical representation for the conditional probability

G(Ei , ti |E, t) = 1(
1 − e−τ

)
kB T

( y

xe−τ

)(a−1)/2
exp

(
− y + xe−τ

1 − e−τ

)

× Ia−1

(
2
√

xye−τ

1 − e−τ

)
, (17)

where the variables x and y are defined by Eq. (11) and τ is given by

τ = ν(t − ti )

ZV
(18)

Equation (17) makes it clear that the initial distribution of the δ(E−Ei ) form gradually
spreads and at long times, tends to thermal distribution.

For comparison, we give the expression, which follows from Eq. (16) in the limit
of strong collisions (ZV = 1)

G(Ei , ti |E, t) = δ(E − Ei )e
−τ + N eq(E)

(
1 − e−τ

)
(19)

Now, the conditional probability (as a function of energy) demonstrates the structure,
consisting of two components that do not mix. As the probability of finding molecules
with initial energy decreases exponentially, the probability of molecule occurrence in
thermal equilibrium increases. The initial conditions are “forgotten” in a time between
two collisions, t0 = 1/ν, which, in this limit, is the relaxation time of internal energy.

Finally, the general solution can be written as a double series obtained by expanding
the time-dependent exponent into a power series

G(Ei , ti |E, t) =
∞∑

m=0

(−1)m [ν(t − ti )]m

m!
m∑

n=0

(−1)n
(

m
n

)
[δn0 δ(E − Ei )

+ (1 − δn0) P
(
Ei → E; γ n)]

(20)

For the strong collisions, equilibrium is reached during a relatively short time νt .
Therefore, the infinite series converges rather rapidly. On the other hand, the finite
series is expressed in terms of the effectively computable functions given by Eq. (10).

4 Weak and strong collisions

To demonstrate the actual numerical results for a concrete collisional system, we shall
use, for illustrative purposes, the parameters applicable to azulene (C10H8) which is
highly diluted in argon at 300 K. It is usual practice to use E as the vibrational energy
above the zero-point energy. In other words, E should be substituted by E + E0 in
(11). At Ei − 〈E〉T = 27, 916 cm−1 and Ei = 28, 895 cm−1, the average energy
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Fig. 1 Relaxation of the initial δ-function distribution with ZV = 124 (weak collisions) to the final thermal
distribution with 〈E〉T = 979 cm−1

transferred per collision is 226 cm−1, i.e., on the average, 124 collisions are required
to reach equilibrium [16]. These data are suffice to calculate the conditional prob-
ability with E0 = 30, 892 cm−1, E∗ = 29, 267 cm−1, and a = 12.49 (vibrational
frequencies are taken from [17]). Figure 1 shows the conditional probability for weak
collisions as a function of energy for different values of the reduced time νt . As νt
increases, the peak displaces along axis E from its initial position to the final one. At
short times, a very narrow distribution located at Ei exp (−νt/ZV ) displaces towards
low energies with a peak shift of

[
1 − exp (−νt/ZV )

]
Ei . With a further increase in

νt , the distribution gradually broadens, but within the limit νt → ∞, leads to the
narrow thermal distribution with 〈E〉T = 979 cm−1. Remember that the conditional
probability is normalized to unity.

The classical trajectory calculations have confirmed the existence of “supercol-
lisions” at which the abnormally large amount of energy is transferred in a single
collision [18–20]. The large polyatomic molecules undergo just few (less than 1%)
supercollisions during which an energy of about 103 − 104 cm−1 is transferred to
the surrounding cold molecules, whereas the average energy transfer per collision is
weak (of order of 102 cm−1). We consider here the supercollisions with ZV = 3 using
the highly excited azulene in argon, as an example. In this case, the rare events take
place in which an energy of 9, 305 cm−1 is transferred per collision. The time evolu-
tion of the conditional probability for a sub-ensemble of strong collisions is shown in
Fig. 2. At long times (νt >> ZV ), the distribution approaches the thermal distribution,
representing an asymmetric curve with a tail directed towards high energies. Quite a
different pattern is observed at short times. There are both a very narrow peak located
at the initial energy and a long tail of probability distribution with a structure of several
maxima and minima at lower energies. This distribution pattern is demonstrated in
detail in Fig. 3. The hot molecules lose their energy which, on the average, is equal to
〈
E〉, given by P(E → E ′) as
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Fig. 2 Change of conditional probability as a function of energy (and reduced time νt) for strong collisions
with ZV = 3
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Fig. 3 The energy dependence of conditional probability at fixed νt for strong collisions with ZV = 3.
For νt = 2, the maxima are localized at 19,600, 13,140, and 90,404 cm−1, respectively. The predicted
values are 19,600, 13,400, and 9,300 cm−1, correspondingly

〈Ei − E〉 = Ei − 〈E〉T

ZV
(21)

Therefore, the cooled molecules arise with the energy Ei −〈
E〉. The portion of these
molecules in the distribution is indicated by the peak centered at the energy

Emax(1) = Ei − Ei − 〈E〉T

ZV
(22)
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The molecules continue to lose their energy due to collisions, but now the initial energy
is Ei − 〈
E〉. It is readily calculated that the second peak of the cooled molecules
will be localized at the energy

Emax(2) = Ei −
(

2 − 1

ZV

)
Ei − 〈E〉T

ZV
(23)

The third peak is localized at the energy

Emax(3) = Ei −
(

3 − 3

ZV
+ 1

Z2
V

)
Ei − 〈E〉T

ZV
(24)

The cooled molecules, losing all their energy, give rise to thermal distribution. It is
clear that the probability to find hot molecules (at high energies) vanishes with time and
the probability to find molecules in thermal equilibrium (with energy 〈E〉T ) increases
with time, as shown in Fig. 3.

5 Conclusions

The master equation for collisional deactivation of the highly vibrationally excited
molecules has been solved for the model of harmonic oscillators with the real density
of vibrational states. The results are represented by analytical solutions to the strong-
and weak-collision-type energy transfer. Thus, the present approach reduces the solu-
tion of the master equation to the much simpler estimation of G(Ei , ti |E, t) from Eqs.
(17) and (20). The careful considerations indicate that the case of weak collisions is
realized for ZV exceeding ZV ≈10. In this case, the conditional probability is calcu-
lated from analytical formula (17). For strong collisions, we recommend to use Eq.
(20) instead of (16). The latter should take into account very many terms at short time
νt to derive a smooth solution. As compared with the well-studied weak collisions
[21], the energy dependence of the conditional probability is unusual (but physically
clear) for the strong collisions. The observed manifestations of this effect are of partic-
ular interest and deserve further studying, in particular, in rotational relaxation, where
the strong collisions are quite common.
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